Blog

Latest entries written by Tim Niemueller

RoboCup Logistics Software Stack Release 2016

RCLL 2016 Simulator Screenshot The Carologistics RoboCup Team has released their software stack of 2016 based on Fawkes 1.0.0 for the RoboCup Logistics League. It is a continuation of the release last year. It includes, for example, direct communication with the Robotino for time-stamped and faster data access and many improvements to the basic skills of the robot, tooling, and simulation integration.

The following video shows the RoboCup 2016 finals between the Carologistics and Solidus. The released software stack is the one used by the Carologistics team, which won the competition.

Details about the release and a video of the simulation are available on the RCLL software stack 2016 release page.

Posted by Tim Niemueller on February 8, 2017 14:00

Fawkes 1.0.0 released

Today we are happy to announce the release of Fawkes 1.0.0. This release four years after the last major release (we still need to get better on this) contains a vast amount of new software components and plugins, sub-systems, and overall system and framework improvements. You may also call this the tenth anniversary release (the first commit was done on Sep 5th 2006). In the past years, Fawkes (or parts thereof) has especially been used in domestic service robot and industrial multi-robot logistics tasks.

In the following we present some additions and changes in 1.0.0 since 0.5.0.

Behavior Modeling
A crucial part of a robotics system is the system to model, reason about and decide on, and eventually execute the intended behavior for the robot to accomplish its task. This version contains some significant improvements.
  • CLIPS-based agent framework: based on the integration of the CLIPS rule-based production system of the 0.5 release we now include several plugins that allow for the easy modeling and execution of agents as a rule-based action selection system.
  • OpenPRS: we have integrated and used the procedural reasoning system in the RoboCup Logistics League.
  • ECLiPSe CLP: this constraint logic programming system is used to power a Golog-based agent framework.
  • ROS-BE: we have backported advances made to the ROS version of the Lua-based Behavior Engine back to Fawkes. Additionally, it allows for native access to the ROS universe using roslua
Topological Map Graph
A topological map graph can be useful for global path finding, relating relevant points of interest (POI) from symbolic names to geometric coordinates, and to store semantic information and properties. In Fawkes, the newly introduced navgraph component and provides these capabilities. It is integrated with the behavior components and additionally provides constraint management (block nodes or edges, apply cost factors to edges), which can be used, for example, for path reservation. It features automatic navgraph generation given POIs, obstacles, and a cell-based map. A navgraph can be represented as a YAML file and there is support for interactive manipulation through ROS rviz.
Gazebo Simulation
The new Gazebo simulation system allows easy access to many types of sensors and full interaction with the Gazebo middleware. This integration is the basis for the simulation integration of the RoboCup Logistics League 2015 domain release.
New Hardware Drivers
Fawkes 1.0 supports several new hardware components, such as the Sick TiM 55x and 57x laser range finders, the Asus Xtion, Point Grey Bumblebee2, Cruizcore XG1100 IMU, and arbitrary Dynamixel servo chains. Based on our libkindrv library the Jaco arm is fully supported, even in dual-arm configurations. The Robotino driver supports direct-access communication mode that completely bypasses OpenRobotino (tested on Robotino 3). This allows for access to sensor timestamps and better control. This also includes a simple acceleration controller which makes the Robotino drive much more smoothly.
Other Items
Some of the other noteworthy changes include switching to YAML-based configuration files, switching to the tf2 transforms library, a plugin to recognize clusters in laser data, bash completion support, and support for IPv6 networking. Additionally, a full pipeline for storing, retrieving, and merging point clouds to and from a MongoDB database has been added. Interfaces are now packed more densely, which means external access libraries must be updated (e.g., jfawkes).
There are many other fixes and performance improvements throughout the software.

Thank you to the contributors who made this release possible. The new release is available on the download page. The documentation is continuously extended and improved in our Trac Wiki.

Posted by Tim Niemueller on December 30, 2016 16:17

RoboCup Logistics Software Stack Release 2015

RCLL 2015 Simulator Screenshot The Carologistics RoboCup Team has released their software stack of 2015 based on Fawkes for the RoboCup Logistics League. It is a continuation of the release last year. In particular, it features an improved simulation adapted to the new gameplay with physical processing machines introduced in 2015. It also contains most features of the upcoming Fawkes (core) release.

The following video shows the RoboCup 2015 finals between the Carologistics and Solidus. The released software stack is the one used by the Carologistics team, which won the competition.

The following video shows the software stack running in simulation with an explanation of its features. The simulation integration is an important part of the software release and has been a crucial factor in developing the software.

Details about the release and a video of the simulation are available on the RCLL software stack 2015 release page.

Posted by Tim Niemueller on February 22, 2016 13:39

Carologistics Organize RoboCup Logistics League Winter School

From December 7th to 11th, the Carologistics Team organized the first RoboCup Logistics League Winter School in Aachen, Germany. Participants of new and existing teams from Germany, Austria, and Japan attended the event. The winter school was held to help new teams to start into the league and existing teams to adapt to the invasive rule changes performed in the past few years.

The content was based on the (pending) full 2015 software stack release of the Carologistics team to better understand and tackle the problems of perception, navigation and self-localization, using and extending the RCLL simulation and the behavior sub-systems like the Lua-based Behavior Engine and the CLIPS agent.

The winter school was supported by Festo Didactic SE and the RoboCup Federation. The feedback of the participants was very positive and the team enjoyed sharing and discussing ideas with the RCLL community at large!

We are currently preparing the material and will release the videos of the talks in January. The slides and information material can be found on the winter school wiki page.

Posted by Tim Niemueller on December 15, 2015 14:00

Carologistics Release RoboCup Logistics League 2014

RoboCup is particularly well-known for its soccer leagues, but there are an increasing number of application leagues. The newest one is the RoboCup Logistics League (RCLL) where groups of robots take on the task of in-factory production logistics. Development of a robust and capable integrated system to operate a group of autonomous mobile robots for an environment like the RCLL can be a tedious and longsome enterprise. This can be a barrier for new (or rebooting) teams and slow down even seasoned teams.

To foster the development of the RCLL as a whole and in the hope to serve as an example, we release our full software stack used for winning the RCLL 2014 today. It is based on the Fawkes Robot Software Framework. While major parts have always been openly available, the release also includes all parts which we developed in private specific to this domain and which we considered to be our competitive edge. We provide this in one coherent and tested package that will reduce the effort required to get a full running robot for the RCLL tremendously.

Some of the highlights that the package contains are components for localization and navigation, perception and vision, basic behaviors (skills) using our Lua-based Behavior Engine, and the complete task-level executive based on CLIPS. With the included simulation integration, you can immediately start and have a complete system that performs the 2014 game on the same level as the world champion.

The software has been developed for more than eight years by numerous people and has been used in the Middle-Size and Standard Platform soccer leagues, the RoboCup@Home league, the RCLL, and projects aside from RoboCup, like Hybrid Reasoning for Intelligent Systems and HERB at CMU. In the last three years the Carologistics team has been the major driving force developing the framework and its components to its present state.

We invite teams to take a look and adopt Fawkes as their software platform. All parts are Open Source software and the vast majority of components are developed in the public. We welcome contributions from anyone and hope to help newcomer teams to get a better start. In combination with the now publicly developed simulation for the 2015 game, it should be far easier to perform better than ever before.

More detailed information are available on the Fawkes LLSF 2014 Release Page.

Posted by Tim Niemueller on March 30, 2015 18:00

MongoDB Logging presented at ROSCon 2013

Last weekend some of us went to ROSCon 2013 to listen to all the great stuff happening in the ROS eco system and present some of our own work.

The item which probably gained most attention was the presentation and announcement of the MoveIt release. It's definitely something to look into and a platform to consider in the future for doing mobile manipulation. Another interesting presentation was on the Robot Web Tools. While the presentation's balance leaned a bit from technical to fancy (probably a web people thing) it showed some very nice integration possibilities. Depending on how platform agnostic it is it could be re-used for Fawkes. Another thing to look into is tf2. It seems to finally get rolled out in ROS, making it worthwhile to consider it for integration again.

A particular thing that was talked much about was ROS 2.0, the magic next version which solves everything and makes all dreams come true -- sort of. It shows a lot of promise and the open process by which its design decisions should be made is appealing. Some of the things that were discussed indicate that ROS 2.0 might be much easier to integrate with other non-ROS software.

On our end Ingo Lütkebohle (Bielefeld University) and Tim Niemueller(RWTH Aachen University) presented data recording and evaluation techniques. The MongoDB-based logging received quite some attention. It seems to be time to backport the advancements we made on the Fawkes logger version back to ROS. Additionally the RobotMetaLogger was presented that might benefit by supporting the MongoDB-logger as an input source.

On-line Use of Recorded Data from Database

On particular example we presented is the use of data recording to remember point clouds and other data. Certain times of observation points are recorded during a run. Then later the data and associated transforms is restored and the point clouds are merged to fill shadows and occlusions in the data for a complete perception run. Below are some screenshots of the visualization documenting the process. You can find a video of the process in our recent video on deliberative active perception employing hybrid reasoning.

Posted by Tim Niemueller on May 16, 2013 13:36

Video about Hybrid Reasoning on the PR2

We have posted a video introducing the DFG Research Unit on Hybrid Reasoning in general, and the C1 Robotics sub-project in particular. We present a demo on the PR2 robot that will serve as a baseline system and testbed for further research. The C1 project is a joint effort of the Research Lab Autonomous Intelligent Systems, University of Freiburg, the Knowledge-Based Systems Group, RWTH Aachen University, and the Research Group Foundations of Artificial Intelligence, University of Freiburg.

The Hybrid Reasoning C1 Robotics project investigates effective and efficient ways to combine quantitative and qualitative aspects of knowledge representation and reasoning. In the video in particular, we implemented a baseline system to work on active perception. We want the robot to reason on its current beliefs and if necessary decide what to do to improve them.

The base system was based on ROS for the PR2 and the TidyUpRobot demo from Freiburg. The PDDL-defined planning domain was adapted for action planning in our active perception scenario. The perception system was based on Fawkes' tabletop-objects plugin and the generic robot database recording with MongoDB. The planner decided on a sequence of positions to move to and waited a short time at each position and noted the timestamp at such a position. The database recording was running all the time, storing in particular transforms, images, and point clouds of the Kinect. After each position, the pcl-db-merge plugin was triggered by the planner as another action to merge and align the point clouds. The data for the recorded time stamps was retrieved from the database. The initial point cloud offset estimate was based on the robot's AMCL ( Fawkes port) pose information (at the respective recording time of the point cloud). Then, the point clouds were further aligned using pair-wise ICP alignment (implemented using PCL). The perception pipeline itself was improved to determine cylinder-shaped objects like certain cups. The pipeline was run on the merged point clouds, eventually leading to better results because occlusion shadows and incomplete object shapes had been resolved by taking data from multiple perspectives into account.

In the future, we want to integrate the system with Readylog to model the belief states and reason on their current quality.

The Fawkes related code is available in the timn/pcl-db-merge and abdon/tabletop-recognition branches. The planning code is in the hybris_c1-experimental branch of the alufr-ros-pkg repository.

Posted by Tim Niemueller on March 18, 2013 14:59

Workshop at European Robotics Forum 2013

There will be a working session on Infrastructure for Robot Analysis and Benchmarking at the European Robotics Forum 2013 next week in Lyon, France. With this workshop we try to create a community bringing together interested people from academia and industry to discuss methods, tools, and ideas about systematically evaluating robot systems. As part of this workshop a member of the Fawkes development team will present state of the art data acquisition technologies of contemporary frameworks such as ROS or Fawkes. One of the shown possibilities will be our work for MongoDB-based data logging.

If you are interested please join us on March 21st (third and last day of the forum) at 8:30. If you want to meet and chat please do not hesitate to contact Tim Niemueller.

There will also be a presentation at ROSCon 2013 on similar topics and we are currently preparing an IROS workshop.

Posted by Tim Niemueller on March 15, 2013 17:28

Robotino Hackathon 2013

The IMA/ZLW & IFU Institute Cluster, RWTH Aachen University, the Knowledge-based Systems Group, RWTH Aachen University, and the Department for Electrical Engineering and Information Technology, Robotics Group, FH Aachen participate in the RoboCup Logistics League Sponsored by Festo (LLSF) as a joint team.

This year selected students participated in focused development activities regarding computer vision and task coordination. The vision's group task was to create a vision application using the omni-directional camera of the Carologistics Robotino to detect active signal lights on the field. The task of the coordination group was to develop a CLIPS-based agent that would plan for appropriate actions to roam the field to search for these activated signals. Once found, it was to move close to the signal. This forms the base system to perform the "Whack-A-Mole" technical challenge specified in this year's LLSF rules.

As last year it allowed the students to excel at their capabilities and it was a lot of fun. Many of the students decided to stay with the team and are now helping in the preparations for the RoboCup German Open 2013.

Posted by Tim Niemueller on March 1, 2013 12:00

5th BRICS Research Camp

Last week, the BRICS project invited young researchers and robotics experts from around the globe for the 5th BRICS Research Camp in Granada, Spain. The overall goal was to integrate and to analyze a mobile manipulation task on the Care-O-bot and YouBot platforms, as well as integrating and evaluating components and ideas developed in the BRICS project.

Group 6 was tasked with porting the YouBot architecture onto the Care-O-bot -- and back. It was decided that rather than porting the software components bit by bit, rather it would be interesting to port capabilities and behavior to accomplish the same robot task. For this a semantic task abstraction level which allows to provide skills as a unified communication from the high level task coordination with the lower level subsystems. This mid-level level system is much in the tradition as Fawkes' Lua-based Behavior Engine. But here, it was implemented as an intermediate Python layer called ActionCmdr. In particular, it supports splitting of the behavior code into multiple packages allowing for general skills were possible, and specialized where necessary. This allowed to run the exact same high-level program on both robots. Two groups cooperated in bringing back the code onto the YouBot, after it has been ported to the Care-O-bot, showing the generality and portability of the new architecture. The picture to the right shows Group 6 and Group 1 with the Care-O-bot and two YouBots (from left to right, back row: Lucian Goron, Peter Schüller, Florian Weißhardt, Andreas Schierl, Tim Niemueller, Oliver Zendel, Felix Meßmer, front row: Leif Jentoft, Chandan Datta, and Daniel Ortiz Morales).

There is more on the Care-O-bot news page and in the program on the Research Camp wiki

Care-O-bot Demo

YouBot Demo

Thanks to Group 1 we were able to port the code back to the YouBot and run the demo.

Posted by Tim Niemueller on November 6, 2012 18:03

robOCD: Robotic Order Cups Demo - An Interactive Domestic Service Robotics Demo

We have uploaded a new video highlighting a demo integrating natural user interaction by speech and gesture, decision theoretic planning, and autonomous task execution on the domestic service robot Caesar at the KBSG, RWTH Aachen University. It was conceived and implemented during the RoboCup German Open.

In a home-like environment Caesar's task is to help setting the table. Besides basic capabilities of an autonomous mobile robot it uses methods for human-robot interaction and it also has a sophisticated high-level control that allows for decision-theoretic planning. We use this demo to illustrate the interplay of several modules of our robot control software in carrying out complex tasks. The overall system allows to perform robust reliable service robotics in domestic settings like in the RoboCup@Home league.

Also, we show how our high-level programming language provides a powerful framework for agent behavior specification that can be beneficially deployed for service robotic applications.

Posted by Tim Niemueller on October 5, 2012 13:24

BendIT - An Interactive Game with Two Robots

Below you can watch a video of the achievements of the Lab Course "Controlling Interactive Games and Robots" at the Knowledge-based Systems Group of the RWTH Aachen University in winter term 2011/2012. It was designed and implemented by the students of the lab course.

A human user uses his torso movements to steer a Festo Robotino robot along a pre-defined course. Our domestic service robot Caesar acts as a referee and autonomously follows the Robotino and makes sure that it stays within a corridor along the path. If the user manages to keep the Robotino within the corridor for the whole path he wins. The game can be used, for example, to engage people in physical training such as a rehabilitation after an injury.

Posted by Tim Niemueller on October 5, 2012 13:19

Fawkes 0.5.0 released

Today we are happy to announce the release of Fawkes 0.5.0. This release two years after the last major release (we need to get better on this) contains a vast amount of new software components and plugins, sub-systems, and overall system and framework improvements. For this release, the large majority of additions and changes has been made to functional components and plugins, rather than the core framework. This indicates that Fawkes has matured over the years and provides a solid base for robot software applications.

The new software components cover typical robot tasks like self-localization, (point cloud based) perception, robot arm motion planning, and integration with other software frameworks. Many of these components are possible because we integrated other third party robot software components and make it available within the Fawkes ecosystem. We have also added support for several common robot platforms like the Nao, the Robotino, and the Roomba. These robots can now be used easily out-of-the box with Fawkes.

Here is a more detailed (yet still incomplete) list of additions and changes in Fawkes 0.5.0.

ROS Integration
This version integrates closely with ROS, the Robot Operating System. It can provide data acquired in Fawkes to ROS and vice versa, integrate ROS' move_base locomotion planner, and several plugins now use rviz to visualize their internal state.
OpenNI Integration
Fawkes can now use OpenNI to acquire RGB-D data from sensors like the Kinect, and make use of the provided hand and user tracking capabilities.
Point Cloud Processing
New tool support and plugins have been added to make use of the Point Cloud Library (PCL). For example, a plugin to analyse tabletop scenes has been added identifying the position of table in front of the robot and objects on it.
OpenRAVE Manipulation Planning
An integration plugin for OpenRAVE has been added that allows plugins to use, for example, its motion planning capabilities. The Katana 5 DoF arm hardware plugin has been extended to make use of this new capability.
New Hardware Platforms
Fawkes can now work on robot platforms like the Nao, the Robotino, and the Roomba. The plugins integrate the robot's hardware capabilities and make it easily available to other plugins.
Self-localization
Fawkes now comes with an Adaptive Monte Carlo Localization plugin which has been ported from ROS. Using a known map an frequently taken 2D laser scans it can determine the robot's position within the map.
Coordinate Frame Transforms Framework
Fawkes now includes a framework and library for easily calculating transforms for points in different coordinate frames. The system is based on and thus compatible with ROS' tf framework.
RRD graphing
A new plugin provides RRD graphing capabilities for plugins. For example, for a MongoDB Logging project performance graphs have been created with this framework.
CLIPS Expert System Integration
The CLIPS rule engine for building Expert Systems has been integrated into Fawkes. Plugins can now easily acquire a CLIPS environment and start using it. For example, the Carologistics team has used this to create a reasoning agent to participate in the RoboCup Logistics League sponsored by Festo.

Thank you to the contributors who made this release possible. The new release is available on the download page. The documentation is continuously extended and improved in our Trac Wiki.

Posted by Tim Niemueller on September 27, 2012 12:43

Generic Logging to MongoDB

Autonomous mobile robots produce an astonishing amount of run-time data during their operation. Data is acquired from sensors and actuator feedback, processed to extract information, and further refined as the basis for decision making or parameter estimation. In today’s robot systems, this data is typically volatile. It is generated, used, and disposed right away. However, some of this data might be useful later, for example to analyze faults or evaluate the robot’s performance. A system is required to store this data as well as enable efficient and flexible querying mechanisms.

We have created systems based on the document-oriented, schema-free database MongoDB that is able to store any and all data transmitted via Fawkes blackboard interfaces or ROS topics. A particularly important property is that the interface or message type structure is inherited by the database document, thus allowing selective queries on the stored data. By creating appropriate indexes access is also very efficient. The architecture has been implemented and released as Open Source software for Fawkes and ROS.

This work has recently been accepted for publication at IROS 2012 in the paper "A Generic Robot Database and its Application in Fault Analysis and Performance Evaluation" (Niemueller, Lakemeyer, Srinivasa). The work has been conducted in a cooperation of the Personal Robotics Lab at The Robotics Institute of the Carnegie Mellon University and the Knowledge-based Systems Group of the Computer Science Department of the RWTH Aachen University.

The data can open the door to a wide array of applications, two of which we sketch in the paper. For one, we develop a model of robot data processing and make use of this model to guide our way to manual data-driven fault analysis. For another, we use the MapReduce paradigm to query the data for performance data like number of successful executions and average run times of the behavior system for a particular time range.

The project is described in detail on the Generic MongoDB logging project page.

Posted by Tim Niemueller on July 31, 2012 18:24

Carologistics at RoboCup 2012

The IMA/ZLW & IFU Institute Cluster, RWTH Aachen University, the Knowledge-based Systems Group, RWTH Aachen University, and the Department for Electrical Engineering and Information Technology, Robotics Group, FH Aachen founded the new Carologistics robot team to participate in the Festo RoboCup Logistics League

The team is about to set out for their journey to Mexico City to take part in the competition. During a Hackathon students were trained and selected to take part in the competition and developed the crucial software components required for the competition. They have developed, adapted, ported, and integrated software to perform self localization, navigate the Robotino on the playing field avoiding obstacles, visually detect pucks and lights, and behavior code to tie it all together. They use a mix of Fawkes and ROS to power their robots and to get a tightly integrated system which fits the platform short in terms of computing power. If you are interested about Fawkes and at RoboCup 2012 you are welcome to visit us and have a chat!

Posted by Tim Niemueller on June 14, 2012 01:24